Pitt | Swanson Engineering

The Chemical and Petroleum Engineering department at the University of Pittsburgh Swanson School of Engineering was established in 1910, making it the first department for petroleum engineering in the world. Today, our department has over 40 expert faculty (tenure/tenure-stream/joint/adjunct), a host of dedicated staff, more than 20 state-of-the-art laboratories and learning centers, and education programs that enrich with strong fundamentals and hands-on experience.

Chemical engineering is concerned with processes in which matter and energy undergo change. The range of concerns is so broad that the chemical engineering graduate is prepared for a variety of interesting and challenging employment opportunities.

Chemical engineers with strong background in sciences are found in management, design, operations, and research. Chemical engineers are employed in almost all industries, including food, polymers, chemicals, pharmaceutical, petroleum, medical, materials, and electronics. Since solutions to energy, environmental, and food problems must surely involve chemical changes, there will be continued demands for chemical engineers in the future.

Jul
25
2017

We Have a Quorum

Chemical & Petroleum

PITTSBURGH (July 25, 2017) … From the smallest cell to humans, most organisms can sense their local population density and change behavior in crowded environments. For bacteria and social insects, this behavior is referred to as “quorum sensing.” Researchers at the University of Pittsburgh’s Swanson School of Engineering have utilized computational modeling to mimic such quorum sensing behavior in synthetic materials, which could lead to devices with the ability for self-recognition and self-regulation. The findings are based on research into biomimetic synthetic materials by Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering, and post-doctoral associate Henry Shum, who is now an assistant professor of applied mathematics at the University of Waterloo. The article, “Synthetic quorum sensing in model microcapsule colonies,” is published this week in the journal PNAS (DOI: 10.1073/pnas.1702288114).“Quorum sensing (QS) is a distinctive behavior of living organisms that allows them to initiate a specific behavior only when a critical threshold in population size and density are exceeded,” Dr. Balazs explained. “This tunable self-awareness is apparent in macro systems such as bees selecting a site for a new hive, but is vital to cellular systems like bacteria, which produce and secrete signaling molecules that act as “autoinducers” once a specific population is reached. Creating a biomimetic response can allow synthetic materials to effectively “count”; this is, to sense and adapt to their environment once a preprogrammed threshold is reached.”  In a biological system, autoinducers in low concentrations diffuse away and therefore do not trigger response. Hence, the system is in a type of “off” state. However, when the cells reach a specific number or quorum, the production of autoinducers leads to a detection and response. This “on” state increases the production of the signaling molecule and activates further metabolic pathways that are triggered by QS, coordinating the colony behavior. “However, autoinducers tend to maintain the “on” state once activated so the system is less sensitive to subsequent decreases in the population,” Dr. Shum said. “For self-regulating materials to unambiguously determine their present density, we modeled a colony of immobile microcapsules that release signaling chemicals in a “repressilator” network, which does not exhibit the same “memory” effect. Instead, we found that chemical oscillations emerge in the microcapsule colony under conditions that are analogous to achieving a quorum in biological systems.”The researchers note that their findings could inspire new mechano-responsive materials, such as polymer gels with embedded QS elements that would activate a certain chemical behavior when compressed, and then switch off when stretched, or when a specific temperature is reached. “For example, you could have a robotic skin that solidifies to protect itself at a certain temperature, and then becomes “squishy” again when the temperature drops to a nominal level,” Dr. Balazs adds. “Although our work is computational, the results show that the creation of self-recognizing and self-regulating synthetic materials is possible.”This research was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0000989. ### Image (above) and animated gif (below): Modeled microcapsules (image: grey spheres/gif: small circles) demonstrate “quorum sensing” behavior. A small collection of microcapsules remains dormant (left) whereas a large, crowded population exhibits oscillations in chemical activity (right), represented by circular waves of color (image)/cyclic color changes (gif).

Jul
10
2017

How do you build a metal nanoparticle?

Chemical & Petroleum

PITTSBURGH (July 10, 2017) … Although scientists have for decades been able to synthesize nanoparticles in the lab, the process is mostly trial and error, and how the formation actually takes place is obscure. However, a study recently published in Nature Communications by chemical engineers at the University of Pittsburgh’s Swanson School of Engineering explains how metal nanoparticles form. “Thermodynamic Stability of Ligand-Protected Metal Nanoclusters” (DOI: 10.1038/ncomms15988) was co-authored by Giannis Mpourmpakis, assistant professor of chemical and petroleum engineering, and PhD candidate Michael G. Taylor. The research, completed in Mpourmpakis’ Computer-Aided Nano and Energy Lab (C.A.N.E.LA.), is funded through a National Science Foundation CAREER award and bridges previous research focused on designing nanoparticles for catalytic applications.“Even though there is extensive research into metal nanoparticle synthesis, there really isn’t a rational explanation why a nanoparticle is formed,” Dr. Mpourmpakis said. “We wanted to investigate not just the catalytic applications of nanoparticles, but to make a step further and understand nanoparticle stability and formation. This new thermodynamic stability theory explains why ligand-protected metal nanoclusters are stabilized at specific sizes.”A ligand is a molecule that binds to metal atoms to form metal cores that are stabilized by a shell of ligands, and so understanding how they contribute to nanoparticle stabilization is essential to any process of nanoparticle application. Dr. Mpourmpakis explained that previous theories describing why nanoclusters stabilized at specific sizes were based on empirical electron counting rules – the number of electrons that form a closed shell electronic structure, but show limitations since there have been metal nanoclusters experimentally synthesized that do not necessarily follow these rules. “The novelty of our contribution is that we revealed that for experimentally synthesizable nanoclusters there has to be a fine balance between the average bond strength of the nanocluster’s metal core, and the binding strength of the ligands to the metal core,” he said. “We could then relate this to the structural and compositional characteristic of the nanoclusters, like size, number of metal atoms, and number of ligands.“Now that we have a more complete understanding of this stability, we can better tailor the nanoparticle morphologies and in turn properties, to applications from biolabeling of individual cells and targeted drug delivery to catalytic reactions, thereby creating more efficient and sustainable production processes.” ### Image above: Structure of a ligand-protected Au25 nanocluster (credit: C.A.N.E.LA.)

Jun
22
2017

Christopher Wilmer Wins AIChE Young Investigator Award for Modeling and Simulation

Chemical & Petroleum

PITTSBURGH (June 22, 2017) … The American Institute of Chemical Engineers (AIChE) selected Christopher Wilmer , assistant professor of chemical and petroleum engineering at the University of Pittsburgh, as its 2017 recipient of the Young Investigator Award for Modeling and Simulation. The AIChE Computational Molecular Science and Engineering Forum (CoMSEF) presents the award annually to one individual who received his/her highest degree within the past seven years. “In the three years since Chris came to Pitt, I have watched him pursue research topics with the potential to have a profound impact on energy, the environment, and society as a whole,” said Steven Little , the William Kepler Whiteford Professor and Chair of the Department of Chemical and Petroleum Engineering at Pitt. “By reaching so high, he has been able to accomplish so much during the very early stages of what promises to be an extraordinary career. The CoMSEF Young Investigator Award is one of the most prestigious honors in chemical engineering simulation and modeling, and truly reflects the breadth and depth of Chris’ career over such a short period.” The AIChE CoMSEF Young Investigator Award for Modeling and Simulation accepts applicants throughout academia, industry, or government laboratories. According to AIChE, the award recognizes “outstanding research in computational molecular science and engineering, encompassing both methods and applications." In addition to the award, Dr. Wilmer will receive a plaque, honorarium, and invitation to give a talk within the CoMSEF Plenary session at the AIChE Annual Meeting in Minneapolis, Minn., this October. Dr. Wilmer is the fifth recipient of this award since its establishment in 2013. About Dr. Wilmer Dr. Wilmer’s research focuses on the use of large-scale molecular simulations to help find promising materials for energy and environmental applications. He is the principal investigator of the Hypothetical Materials Lab at Pitt and leads his team in solving energy and environmental challenges with complex, hypothetical nanostructures called “molecular machines.” He earned his bachelor’s degree in applied science from the University of Toronto’s Engineering Science—Nanoengineering program, and his PhD in Chemical Engineering at Northwestern under the mentorship of Prof. Randall Q. Snurr. While at Northwestern, Dr. Wilmer took an interest in developing new technologies through entrepreneurship and co-founded NuMat Technologies, which designs porous materials that could be used to make better natural gas fuel tanks for vehicles. In 2012, the company won the Department of Energy’s National Clean Energy Business Plan Competition, while Dr. Wilmer was named to Forbes’ “30 Under 30 in Energy.” He has authored more than 20 publications and holds more than 500 article citations. For more information visit Dr. Wilmer’s website at www.wilmerlab.com . ###
Matt Cichowicz, Communications Writer
Jun
16
2017

ChemE Department Appoints Two New Vice Chairs

Chemical & Petroleum

PITTSBURGH, PA (June 16, 2017) … In response to increasing enrollment and curricular evolution, two Vice Chair positions for faculty have been established in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh’s Swanson School of Engineering. Taryn Bayles will become the Vice Chair for Undergraduate Education, and Robert Parker will become the Vice Chair for Graduate Education.“Taryn’s and Bob’s shared commitment to our students is very moving to me, and I am quite impressed with the visions that they set forth,” said Steven Little, William Kepler Whiteford Professor and Chair of the Department of Chemical and Petroleum Engineering. “They have the Department’s full support in achieving those visions, and I could not be more excited to serve alongside them.”Joseph McCarthy, the William Kepler Whiteford Professor in the Chemical and Petroleum Engineering Department, will leave his current role in the Department as Vice Chair for Education to become the University of Pittsburgh Vice Provost for Undergraduate Studies on August 1, 2017.As Vice Chair for Undergraduate Education, Dr. Bayles will be responsible for the academic experience of students through the Pillars program, a National Science Foundation-funded grant designed to reform the undergraduate Chemical Engineering curriculum at Pitt. Her focus will be on increasing diversity, inclusion, and student satisfaction.Dr. Parker served as the Department’s graduate program coordinator from 2006 – 2012. He will be responsible for building the graduate program quality and diversity, with a focus on engaging the post-graduate community.About Dr. BaylesPrior to joining Pitt, Dr. Bayles was the Undergraduate Program Director in Chemical, Biochemical and Environmental Engineering at University of Maryland, Baltimore County. Under her leadership, the program enrollment more than quadrupled and the percentage of female and underrepresented minority students increased. She has served as the principal investigator or co-principal investigator on $6.6 million in NSF awards that focus on support and mentoring for undergraduate students, outreach, and hands-on design experiences. She has developed and led more than 100 workshops with more than 5,000 participants for K-12 students, K-12 teachers, college students, and faculty members.   Dr. Bayles was awarded the University System of Maryland Regents Award for Collaboration in Public Service and the University System of Maryland Regents Award for Excellence in Mentoring. These are the highest awards given for faculty achievement in the University of Maryland system. To increase diversity at Pitt, she will draw upon her experience with the Meyerhoff program, in which she developed and led engineering workshops for the summer bridge program and received the Mentor of the Year Award. Since joining Pitt, Dr. Bayles has incorporated a hands-on design project in the CHE 0100 course, which was to design, build, test, and analyze a hemodialysis system. She serves as the faculty advisor of the American Institute of Chemical Engineers (AIChE) student chapter and the ChemE Car team. Dr. Bayles also serves as Chair of the Education Division of AIChE and the Publications Board of Chemical Engineering Education.About Dr. ParkerDr. Parker joined the University of Pittsburgh faculty as an Assistant Professor in 2000 and was promoted to Professor in 2014. His research program focuses on systems medicine and the use of mathematical models in the design of clinical decision support systems. He has been recognized for excellence in education through awards such as the Carnegie Science Center Excellence in Higher Education Award, the David L. Himmelblau Award from the Computing and Systems Technology (CAST) Division of AIChE, and most recently the 2017 Swanson School of Engineering Outstanding Educator Award. His commitment to a collaborative future in graduate education formed the basis of two funded Department of Education Graduate Assistance in Areas of National Need (GAANN) training programs, as well as the Systems Medicine Research Experiences for Undergraduates (REU) program. In addition to developing graduate-level training programs to support PhD students, Dr. Parker will lead graduate admissions, manage PhD timelines including qualifying examinations, support graduate recruiting, work with the Swanson School Office of Diversity to continue building a diverse graduate program, serve as the faculty advisor of the Department's Graduate Student Association, and manage faculty teaching assignments. ###
Matt Cichowicz, Communications Writer
Jun
8
2017

Royal Society of Chemistry Journal Names ChemE’s John Keith One of Materials Chemistry’s “Rising Stars”

Chemical & Petroleum

PITTSBURGH, PA (June 8, 2017) … The Journal of Materials Chemistry A, published by the Royal Society of Chemistry, included University of Pittsburgh researcher John Keith in its list of Emerging Investigators in 2017. The journal’s themed issue highlighted “rising stars” of materials chemistry research recommended by experts in the field.Dr. Keith, assistant professor and the inaugural Richard King Mellon Faculty Fellow in Energy in the Department of Chemical and Petroleum Engineering at Pitt’s Swanson School of Engineering, was included in the journal for his work on “Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis” (DOI: 10.1039/C7TA00405B).The paper outlines the work of Dr. Keith and his team on improving the performance of tin electrocatalysts for CO2 reduction. By using computational quantum chemistry modeling, the researchers studied reaction mechanisms on partially-reduced tin oxide surfaces and which elemental dopant additives can be added to make the CO2 conversion more energy efficient.“Some of the dopants we modeled were already known to improve CO2 conversion energy efficiencies, and since our models could predict those cases we’re confident the other dopants we predicted as improving efficiencies are very promising for future work,” said Dr. Keith. “Our work demonstrates how we can modify tin-based oxide materials to make them better at converting CO2 into useful chemicals and fuels.”As Principal Investigator and Founder of the Keith Lab in Computational Chemistry at Pitt, Dr. Keith studies atomic scale reaction mechanisms to understand how to design better catalysts whether the goal is a commodity chemical made from CO2 or an anticorrosion coating for the US Navy.Joining Dr. Keith on the study were PhD students Karthikeyan Saravanan and Yasemin Basdogan as well as James Dean, a former undergraduate researcher that was supported by Pitt’s NSF-sponsored Particle-based Functional Materials Research Experience for Undergraduates program.About Dr. KeithJohn Keith is a tenure-track assistant professor at the University of Pittsburgh in the Department of Chemical and Petroleum Energy and affiliated with Pitt’s Center for Energy as its R. K. Mellon Faculty Fellow in Energy. After obtaining his PhD from Caltech, he was an Alexander von Humboldt postdoctoral fellow at the University of Ulm and then an Associate Research Scholar at Princeton University. He began his appointment at Pitt in September 2013. His group uses first-principles based computational chemistry modeling to study chemical reaction mechanisms and design materials and catalysts for energy storage and conversion. Current research activities focus on atomic scale mechanisms for CO2 conversion, computer-aided design of molecular chelants, and tuning oxide materials for catalysis via doping. In 2017, Dr. Keith received a prestigious CAREER award from the National Science Foundation.About Journal of Materials Chemistry AThe Journal of Materials Chemistry A publishes research related to “high impact applications, properties, and synthesis of exciting new materials for energy and sustainability.” The journal has an impact factor of 8.262, and there are 48 issues per year in addition to its themed collections. The Royal Society of Chemistry has more than 54,000 members internationally and publishes 43 peer-reviewed journals, including the Journal of Materials Chemistry A and its two sister publications: Journal of Materials Chemistry B and Journal of Materials Chemistry C. ###
Matt Cichowicz, Communications Writer

Upcoming Events


back
view more