Pitt | Swanson Engineering

The Chemical and Petroleum Engineering department at the University of Pittsburgh Swanson School of Engineering was established in 1910, making it the first department for petroleum engineering in the world. Today, our department has over 40 expert faculty (tenure/tenure-stream/joint/adjunct), a host of dedicated staff, more than 20 state-of-the-art laboratories and learning centers, and education programs that enrich with strong fundamentals and hands-on experience.

Chemical engineering is concerned with processes in which matter and energy undergo change. The range of concerns is so broad that the chemical engineering graduate is prepared for a variety of interesting and challenging employment opportunities.

Chemical engineers with strong background in sciences are found in management, design, operations, and research. Chemical engineers are employed in almost all industries, including food, polymers, chemicals, pharmaceutical, petroleum, medical, materials, and electronics. Since solutions to energy, environmental, and food problems must surely involve chemical changes, there will be continued demands for chemical engineers in the future.

May
17
2017

NSF Grant Provides Research Opportunities for Undergraduates at Pitt

Chemical & Petroleum

PITTSBURGH, PA (May 17, 2017) … According to the National Science Foundation (NSF), research experience is one of the most effective avenues for attracting students to and retaining them in science and engineering, as well as to preparing them for careers in these fields. Thanks to NSF, an engineering program at the University of Pittsburgh’s Swanson School of Engineering will once again be able to better prepare undergraduates for academia, research, and industry. The NSF awarded a Research Experience for Undergraduates (REU) grant to provide undergraduate students with research opportunities in the Swanson School’s Department of Chemical and Petroleum Engineering. The three-year, $425,000 grant will fund a 10-week summer research program for students and provide them with a stipend and financial assistance for food, housing, and travel.Principal Investigator Joseph McCarthy, the William Kepler Whiteford Professor and Vice Chair for Education in the Department of Chemical and Petroleum Engineering, will lead the REU program. Dr. McCarthy co-authored the grant proposal “REU Site: Enhancing Knowledge Integration Through Undergraduate Research – Particle-based Functional Materials for Energy, Sustainability, and Biomedicine.” Co-Principal Investigator Taryn M. Bayles, also a professor in the Department of Chemical and Petroleum Engineering, will assist with the REU program.As a Particle-based Functional Materials (PFM) REU grant, the student research will comprise computational and experimental studies of materials that fulfill a specific function either because of their particulate nature or the influence of particles on structure. The program will admit 12 students each year beginning in 2017 and take place between May and August. “The impact of this program for these young students cannot be overstated,” said Steven Little, William Kepler Whiteford Professor and Chair of the Department of Chemical and Petroleum Engineering. “My own story goes all the way back to 1998 when I came to the University of Pittsburgh as an undergraduate student that applied to the Department of Chemical and Petroleum Engineering through an REU program. That experience is likely a major part of why I went to graduate school in the first place.”The PFM REU program is in its third round of funding and is the second funded grant for the Department of Chemical and Petroleum Engineering to help provide research opportunities for undergraduate and graduate students focused on this topic. For more than a decade, this REU program combined with a similar program called the PFM Graduate Assistance in Areas of National Need (GAANN) fellowships have provided both undergraduate and graduate students with research opportunities at Pitt. By the end of this funding cycle, these combined programs will have sponsored over 100 students to pursue their research goals.In addition to working with Pitt graduate students and faculty, undergraduate students accepted in the REU program will work in teams on a “cross-training” internship. They will complete a mini-project in a different area of particle-based functional materials. They can also attend weekly seminars on topics such as laboratory safety, research integrity and oral presentation skills. Students will have the opportunity to participate in social, recreational and cultural activities. The program will include an Ethics Forum in the middle of the ten weeks and will conclude with a Research Symposium.Dr. McCarthy is recognized for his impact on undergraduate engineering education. He is the primary architect of the Pillars curriculum in Chemical Engineering, an award winning block-scheduled curriculum for chemical engineering undergraduates that is the first fully integrated engineering curriculum. Additionally, he oversees both of Pitt’s undergraduate and graduate programs in chemical and petroleum engineering, and is the recipient of a Carnegie Science Award for Higher Education (2008), the Swanson School of Engineering Outstanding Educator award (2012), and the Chancellor's Distinguished Teaching Award (2015). For more information visit: http://granular.che.pitt.edu/PFM/PFM-REU/ ###
Matt Cichowicz, Communications Writer
May
10
2017

Following two decades as Dean, Gerald Holder to return to faculty at Pitt's Swanson School of Engineering

All SSoE News, Bioengineering, Chemical & Petroleum, Civil & Environmental, Electrical & Computer, Industrial, MEMS, Diversity

PITTSBURGH (May 10, 2017) ... Marking the culmination of more than two decades of dynamic leadership, Gerald D. Holder, U.S. Steel Dean of Engineering in the University of Pittsburgh’s Swanson School of Engineering, has announced his intention to step down from his position to return to the faculty in the fall of 2018.Holder, Distinguished Service Professor of chemical engineering, has been dean of the Swanson School since 1996 and a member of its faculty since 1979.“Two words come to mind when I look back on Jerry’s incredible career as dean of our Swanson School of Engineering: tremendous growth,” said Chancellor Patrick Gallagher. “Under Jerry’s leadership, our Swanson School has seen record enrollment levels and total giving to the school has topped $250 million. “The school has also expanded academically to support new knowledge in areas like energy and sustainability — and also new partnerships, including a joint engineering program with China’s Sichuan University. And while I will certainly miss Jerry’s many contributions as dean, I am grateful that he will remain an active faculty member and continue to strengthen our Swanson School’s bright future,” Gallagher said.       “Through a focus on innovation and excellence, Dean Holder has led a transformation of the Swanson School of Engineering into a leader in engineering research and education,” said Patricia E. Beeson, provost and senior vice chancellor. Beeson added, "From the establishment of the now top-ranked Department of Bioengineering to the integrated first-year curriculum that has become a national model, the Swanson School has been a change maker. And with nearly three-quarters of the faculty hired while he has been dean, the culture of success that he has established will remain long after he steps down.” The University plans to announce the search process for his successor in the coming months. Holder’s Many Accomplishments In his 21 years as dean, Holder has overseen school growth as well as increases in research awards and philanthropic gifts. Enrollment has doubled to nearly 4,000 undergraduate and graduate students, and the number of PhDs has increased threefold. Holder also has emphasized programs to nourish diversity and engagement — for example, in 2012 the Swanson School had the highest percentage in the nation of engineering doctoral degrees awarded to women. Co-curricular programs also have prospered during Holder’s tenure. The school’s cooperative education program, which places students in paid positions in industry during their undergraduate studies, has increased to approximately 300 active employers. International education or study abroad has also become a hallmark of a Pitt engineering education, with 46 percent participation in 2015 versus a 4.6 percent national average for engineering and a 22.6 percent national average for STEM fields. The school’s annual sponsored research has tripled during Holder’s years as dean, totaling a cumulative $400 million. Alumnus John A. Swanson’s landmark $43 million naming gift came in 2007, the largest-ever gift by an individual to the University at the time.University-wide initiatives developed during Holder’s tenure as dean include the Gertrude E. and John M. Petersen Institute of NanoScience and Engineering; the Mascaro Center for Sustainable Innovation, founded with support of alumnus John C. “Jack” Mascaro; and the Center for Energy.Holder is likewise held in high regard by his peers. "As a dean of long standing, many of us refer to Dean Holder as `the Dean of deans,’ not just because of his years of service but also because of the respect that we have for his leadership, mentorship and impact on the engineering profession,” said James H. Garrett Jr., dean of the College of Engineering at Carnegie Mellon University.“He is an accomplished academician, an exceptional academic leader and a tremendous human being.” Holder, a noted expert on natural gas hydrates and author of more than 100 journal articles, earned a bachelor’s degree in chemistry from Kalamazoo College and bachelor’s, master’s and PhD degrees in chemical engineering from the University of Michigan. He was a faculty member in chemical engineering at Columbia University prior to joining the Pitt engineering faculty in 1979. He served as chair of the chemical engineering department from 1987 to 1995 before being named dean of engineering.Among many professional accomplishments, he was named an American Association for the Advancement of Science Fellow in 2003. In 2008 he was named an American Institute of Chemical Engineers Fellow and was awarded the William Metcalf Award from the Engineers’ Society of Western Pennsylvania for lifetime achievement in engineering. In 2015 he was elected chair of the American Society of Engineering Educators’ (ASEE) Engineering Deans Council, the leadership organization of engineering deans in the U.S., for a two-year term. The council has approximately 350 members, representing more than 90 percent of all U.S. engineering deans and is tasked by ASEE to advocate for engineering education, research and engagement throughout the U.S., especially among the public at large and in U.S. public policy. ###
Author: Kimberly Barlow, University Communications
May
10
2017

ChemE’s Taryn Bayles Named American Institute of Chemical Engineers Fellow

Chemical & Petroleum, Diversity

PITTSBURGH, PA (May 10, 2017) … The American Institute of Chemical Engineers (AIChE) has elected Taryn Bayles, professor of Chemical and Petroleum Engineering at the University of Pittsburgh, as a Fellow. Fellow is the highest grade of membership with AIChE. It requires 25 years of excellence in chemical engineering practice, at least 10 years of membership and participation with AIChE, and Senior Membership at the time of election. “This is a tremendous accolade for Taryn, and our department couldn’t be more proud,” noted Steven R. Little, the William Kepler Whiteford Professor and Chair of Chemical and Petroleum Engineering. “Taryn is one of the nation’s most noted experts in engineering education, and literally wrote the book (with a co-author) on engaging high school students in engineering. Her contributions to the department are exceeded only by the passion for engineering that she encourages in our student body.”Dr. Bayles is the fourth professor at the University of Pittsburgh to become an AIChE Fellow, including Karl Johnson, George Klinzing, and Dean Gerald Holder.The AIChE limits the number of Fellows at any time to five percent of the sum of Fellows, Senior Members, and Members. Fellows must be nominated by a member of AIChE, and the grade of Fellow is intended to honor and reward AIChE members for their accomplishments and service.About Dr. BaylesTaryn M. Bayles is a non-tenure stream (NTS) Professor of Chemical and Petroleum Engineering and serves as the Chair of the American Institute of Chemical Engineers Education Division. She has spent part of her career working in industry with Exxon, Westinghouse, and Phillips Petroleum. Her industrial experience has included process engineering, computer modeling and control, process design and testing, and engineering management. She has also spent over 20 years teaching Chemical Engineering at the University of Nevada Reno, University of Pittsburgh, University of Maryland College Park, and University of Maryland Baltimore County.Dr. Bayles research focuses on Engineering Education and Outreach to increase awareness of and interest in pursuing engineering as a career, as well as to understand what factors help students be successful once they have chosen engineering as a major. She is the co-author of the INSPIRES (INcreasing Student Participation, Interest and Recruitment in Engineering & Science) curriculum, which introduce high school students to engineering design through hands-on experiences and inquiry-based learning with real world engineering design challenges. This curriculum targets the International Technology and Engineering Education Association Standards as well as National Next Generation Science Standards and aligns with the Framework for K-12 Science Education. About AIChEThe American Institute of Chemical Engineers is the world’s leading organization for chemical engineering professionals with more than 50,000 members from over 100 countries. AIChE has the breadth of resources and expertise from core process industries to emerging areas, such as translational medicine. ###
Matt Cichowicz, Communications Writer
May
4
2017

Water, Water, Nowhere

Chemical & Petroleum

PITTSBURGH (May 4, 2017) … Hydrogen powered fuel cell cars, developed by almost every major car manufacturer, are ideal zero-emissions vehicles because they produce only water as exhaust. However, their reliability is limited because the fuel cell relies upon a membrane that only functions in when enough water is present, limiting the vehicle’s operating conditions.   Researchers at the University of Pittsburgh’s Swanson School of Engineering have found that the unusual properties of graphane – a two-dimensional polymer of carbon and hydrogen – could form a type of anhydrous “bucket brigade” that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems. The principal investigator is Karl Johnson, the William Kepler Whiteford Professor in the Swanson School’s Department of Chemical & Petroleum Engineering, and graduate research assistant Abhishek Bagusetty is the lead author. Their work, “Facile Anhydrous Proton Transport on Hydroxyl Functionalized Graphane” (DOI: 10.1103/PhysRevLett.118.186101), was published this week in Physical Review Letters. Computational modeling techniques coupled with the high performance computational infrastructure at the University’s Center for Research Computing enabled them to design this potentially groundbreaking material. Hydrogen fuels cells are like a battery that can be recharged with hydrogen and oxygen. The hydrogen enters one side of the fuel cell, where it is broken down into protons (hydrogen ions) and electrons, while oxygen enters the other side and is ultimately chemically combined with the protons and electrons to produce water, releasing a great deal of energy. At the heart of the fuel cell is a proton exchange membrane (PEM). These membranes mostly rely on water to aid in the conduction of protons across the membranes. Everything works well unless the temperature gets too high or the humidity drops, which depletes the membrane of water and stops the protons from migrating across the membrane. Dr. Johnson explains that for this reason, there is keen interest in developing new membrane materials that can operate at very low water levels–or even in the complete absence of water (anhydrously). “PEMs in today’s hydrogen fuel cells are made of a polymer called Nafion, which only conducts protons when it has the right amount of water on it,” says Dr. Johnson. “Too little water, the membrane dries out and protons stop moving. Too much and the membrane “floods” and stops operating, similar to how you could flood a carbureted engine with too much gasoline,” he added. Dr. Johnson and his team focused on graphane because when functionalized with hydroxyl groups it creates a more stable, insulating membrane to conduct protons. “Our computational modeling showed that because of graphane’s unique structure, it is well suited to rapidly conduct protons across the membrane and electrons across the circuit under anhydrous conditions,” Dr. Johnson said. “This would enable hydrogen fuel cell cars to be a more practical alternative vehicle.” About the Johnson Research GroupThe Johnson Research Group at the University of Pittsburgh uses atomistic modeling to tackle fundamental problems over a wide range of subject areas in chemical engineering, including the molecular design of nanoporous sorbents for the capture of carbon dioxide, the development of catalysts for conversion of carbon dioxide into fuels, the transport of gases and liquids through carbon nanotube membranes, the study of chemical reaction mechanisms, the development of CO2-soluble polymers and CO2 thickeners, and the study of hydrogen storage with complex hydrides.   About Dr. JohnsonKarl Johnson is a member of the Pittsburgh Quantum Institute. He received his bachelor and master of science degrees in chemical engineering from Brigham Young University, and PhD in chemical engineering with a minor in computer science from Cornell University. ### Illustration above and below: In computer simulations at Pitt, graphane provides a water-free "bucket brigade" to rapidly conduct protons across the membrane and electrons across the circuit. (Credit: A. Bagusetty/University of Pittsburgh; Rick Henkel)

Apr
25
2017

The ‘Can’-Do Spirit

Chemical & Petroleum

PITTSBURGH, PA (April 25, 2017) … A team of students from the University of Pittsburgh won $10,000 and second place at Princeton University’s TigerLaunch Finals competition for entrepreneurship. The team founded the company Aeronics, which designs and develops improved methods of storing oxygen in lightweight, low-pressure tanks.One of Aeronics’ innovations, Medipod, is about the size of a soda can and contains a porous lining to increase internal surface area. Because gases concentrate on surfaces, Medipod can store more oxygen while decreasing the tanks internal pressure. The technology is particularly appealing for people who suffer from chronic obstructive pulmonary disease (COPD) and currently lug around large oxygen tanks on a daily basis.The Aeronics team comprises Pitt students Alec Kaija, Blake Dube and Mark Spitz. Christopher Wilmer, assistant professor in the Swanson School’s Department of Chemical and Petroleum Engineering, is an adviser to the team. Aeronics qualified for participation in the TigerLaunch national competition after presenting at the TigerLaunch X NYC competition at New York University. A total of 18 teams, selected from three regional competitions, received invitations to the finals.Last December, Aeronics took first place at Pitt Blast Furnace’s Demo Day. Like TigerLaunch, Demo Day provides student startups the opportunity to pitch their ideas and win cash prizes. The Aeronics team also won several other competitions supported by the University of Pittsburgh Innovation Institute including the Randall Family Big Idea Competition, the Michael G. Wells Competition and the Kuzneski Innovation Cup.Dube, CEO of Aeronics, worked with Dr. Wilmer in the Wilmer Lab investigating theoretical limits of oxygen storage in porous materials while pursuing his bachelor’s degree in chemical engineering. Spitz, who serves as COO, is majoring in exercise science in the School of Education. Both students will graduate this May and begin working full-time at Aeronics. Kaija, currently a PhD candidate in the Department of Chemical and Petroleum Engineering, will continue to develop Aeronics technology while completing his studies. ### Image above (from left to right): Spitz, Dube and Kaija at the TigerLaunch Finals.
Matt Cichowicz, Communications Writer

Upcoming Events


back
view more